Homework Section 15.5

- 1. Calculate the mass and the center of mass of the lamina that occupies the region *R* and has density function $\rho(x, y)$.
 - a) $R = \{(x, y) \mid -1 \le x \le 1, \ 0 \le y \le 2\}; \ \rho(x, y) = x^2 y$
 - b) *R* is bounded by the parabola $x = y^2$ and the line y = -x + 2; $\rho(x, y) = 4$
- 2. A lamina is given by the quarter disk $x^2 + y^2 \le 4$ in the first quadrant. Calculate its center of mass when the density at any point on the lamina is proportional to its distance from the origin. [Hint: using polar coordinates, the distance to the origin is *r*.]
- 3. Find the moments of inertia I_x , I_y , I_0 for the lamina in exercise 2.
- 4. Suppose a lamina corresponds to the region between the curve $y = \cos x$ and the *x*-axis from x = 0 to $x = \pi/2$. Given that the lamina has constant density $\rho(x, y) = \rho$, Calculate the moments of inertia I_x and I_y and the radii of gyration $\overline{\overline{x}}$ and $\overline{\overline{y}}$.