Homework Section 15.5

1. Calculate the mass and the center of mass of the lamina that occupies the region R and has density function $\rho(x, y)$.
a) $\quad R=\{(x, y) \mid-1 \leq x \leq 1,0 \leq y \leq 2\} ; \rho(x, y)=x^{2} y$
b) $\quad R$ is bounded by the parabola $x=y^{2}$ and the line $y=-x+2 ; \rho(x, y)=4$
2. A lamina is given by the quarter disk $x^{2}+y^{2} \leq 4$ in the first quadrant. Calculate its center of mass when the density at any point on the lamina is proportional to its distance from the origin. [Hint: using polar coordinates, the distance to the origin is r.]
3. Find the moments of inertia I_{x}, I_{y}, I_{0} for the lamina in exercise 2.
4. Suppose a lamina corresponds to the region between the curve $y=\cos x$ and the x-axis from $x=0$ to $x=\pi / 2$. Given that the lamina has constant density $\rho(x, y)=\rho$, Calculate the moments of inertia I_{x} and I_{y} and the radii of gyration $\overline{\bar{x}}$ and $\overline{\bar{y}}$.
