Homework Section 15.9

- 1. Find the Jacobian of the transformation: $x = u^3 v^2$, $y = u^3 + v^2$.
- 2. Find the image of the set under the given transformation: *S* is the triangular region with vertices (0, 0), (1, 1), (0,1); x = u, $y = v^2$.
- 3. Use the given transformation to evaluate the integral:
 - a) $\iint_{R} y^{2} dA$, where *R* is the region bounded by the ellipse $4x^{2} + 9y^{2} = 36$; x = 3u, y = 2v.
 - b) $\iint_{R} xydA$, where *R* is the region in the first quadrant bounded by the lines y = x, y = 2x and the hyperbolas xy = 1, xy = 2; $x = \frac{v}{u}$, y = u.
 - c) $\iint_{R} (x^{2} + xy + y^{2}) dA$, where *R* is the region bounded by the ellipse $x^{2} + xy + y^{2} = 1$; $x = \frac{1}{\sqrt{3}}u + v$ and $y = \frac{1}{\sqrt{3}}u - v$
- 4. Evaluate the integral by making an appropriate change of variables.
 - a) $\iint_{R} \frac{2x y}{x 3y} dA$, where *R* is the parallelogram enclosed by the lines 2x y = 0, 2x - y = 4, x - 3y = 1, x - 3y = 6.
 - b) $\iint_{R} e^{\frac{y-x}{y+x}} dA$, where *R* is the trapezoidal region with vertices (1, 0), (3,0), (0, 3), and (0, 1).