Homework Section 15.9

1. Find the Jacobian of the transformation: $x=u^{3}-v^{2}, y=u^{3}+v^{2}$.
2. Find the image of the set under the given transformation: S is the triangular region with vertices (0,0), (1,1), (0,1); $x=u, y=v^{2}$.
3. Use the given transformation to evaluate the integral:
a) $\iint_{R} y^{2} d A$, where R is the region bounded by the ellipse $4 x^{2}+9 y^{2}=36 ; x=3 u$, $y=2 v$.
b) $\iint_{R} x y d A$, where R is the region in the first quadrant bounded by the lines $y=x$, $y=2 x$ and the hyperbolas $x y=1, x y=2 ; x=\frac{v}{u}, y=u$.
c) $\iint_{R}\left(x^{2}+x y+y^{2}\right) d A$, where R is the region bounded by the ellipse $x^{2}+x y+y^{2}=1$;
$x=\frac{1}{\sqrt{3}} u+v$ and $y=\frac{1}{\sqrt{3}} u-v$
4. Evaluate the integral by making an appropriate change of variables.
a) $\iint_{R} \frac{2 x-y}{x-3 y} d A$, where R is the parallelogram enclosed by the lines $2 x-y=0$, $2 x-y=4, x-3 y=1, x-3 y=6$.
b) $\iint_{R} e^{\frac{y-x}{y+x}} d A$, where R is the trapezoidal region with vertices $(1,0),(3,0),(0,3)$, and $(0,1)$.
