Homework Section 16.2

- 1. Evaluate the line integral over the given curve *C*:
 - a) $\int_{C} 8\sqrt{x} \, ds$, C: $x = t^2$, y = t, $0 \le t \le 2$
 - b) $\int_C x^4 y \, ds$, *C* is the upper half of the circle $x^2 + y^2 = 16$
 - c) $\int_{C} (xy + \ln y) \, dx$, C is the arc of the parabola $x = y^2$ from (1, 1) to (9, 3)
 - d) $\int_{C} (x+y) dx + xy dy$, C consists of line segments from (0, 0) to (1, 1) and from (1, 1) to (2, 3)
 - e) $\int_{C} ye^{x^{2}} ds$, *C* is the line segment from (0, 0, 0) to (2, 1, 3)
- 2. Compute the line integral $\int_{C} \mathbf{F} \cdot d\mathbf{r}$, where *C* is given by the vector function $\mathbf{r}(t)$.

a)
$$\mathbf{F}(x, y) = xy^2 \mathbf{i} - x\sqrt{y} \mathbf{j}, \quad \mathbf{r}(t) = t^3 \mathbf{i} + t^2 \mathbf{j}, \ 0 \le t \le 1$$

b)
$$\mathbf{F}(x, y, z) = \cos(x)\mathbf{i} + 2y\mathbf{j} + xz \mathbf{k}, \quad \mathbf{r}(t) = t^{2}\mathbf{i} - t^{3}\mathbf{j} + 4t \mathbf{k}, \quad 0 \le t \le 1$$

- 3. Find the work done by the force field $\mathbf{F}(x, y) = xy\mathbf{i} y\mathbf{j}$ in moving a particle along a quarter of the unit circle from (1, 0) to (0, 1).
- 4. The figure shows a vector field **F** and two line segments C_1 and C_2 . Determine if the respective line integrals of **F** over C_1 and C_2 are positive, negative, or zero. Explain your answers.

