Homework Section 16.2

1. Evaluate the line integral over the given curve C :
a) $\int_{C} 8 \sqrt{x} d s, C: x=t^{2}, y=t, 0 \leq t \leq 2$
b) $\quad \int_{C} x^{4} y d s, C$ is the upper half of the circle $x^{2}+y^{2}=16$
c) $\quad \int_{C}(x y+\ln y) d x, C$ is the arc of the parabola $x=y^{2}$ from $(1,1)$ to $(9,3)$
d) $\quad \int_{C}(x+y) d x+x y d y, C$ consists of line segments from $(0,0)$ to $(1,1)$ and from $(1,1)$ to $(2,3)$
e) $\quad \int_{C} y e^{x z} d s, C$ is the line segment from $(0,0,0)$ to $(2,1,3)$
2. Compute the line integral $\int_{C} \mathbf{F} \bullet d \mathbf{r}$, where C is given by the vector function $\mathbf{r}(t)$.
a) $\quad \mathbf{F}(x, y)=x y^{2} \mathbf{i}-x \sqrt{y} \mathbf{j}, \quad \mathbf{r}(t)=t^{3} \mathbf{i}+t^{2} \mathbf{j}, 0 \leq t \leq 1$
b) $\quad \mathbf{F}(x, y, z)=\cos (x) \mathbf{i}+2 y \mathbf{j}+x z \mathbf{k}, \quad \mathbf{r}(t)=t^{2} \mathbf{i}-t^{3} \mathbf{j}+4 t \mathbf{k}, 0 \leq t \leq 1$
3. Find the work done by the force field $\mathbf{F}(x, y)=x y \mathbf{i}-y \mathbf{j}$ in moving a particle along a quarter of the unit circle from $(1,0)$ to $(0,1)$.
4. The figure shows a vector field \mathbf{F} and two line segments C_{1} and C_{2}. Determine if the respective line integrals of \mathbf{F} over C_{1} and C_{2} are positive, negative, or zero. Explain your answers.

