Homework Section 16.3

1. A table of values of a function f with continuous gradient is given below.

Evaluate $\int_{C} \nabla f \cdot d \mathbf{r}$, where C is a smooth curve beginning at $(0,0)$ and ending at $(2,1)$.

x	y	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{0}$	-1	6	5
$\mathbf{1}$	3	4	7
$\mathbf{2}$	8	3	9

2. Determine whether or not \mathbf{F} is a conservative vector field. If it is, find a function f such that $\mathbf{F}=\nabla f$.
a) $\quad \mathbf{F}(x, y)=(5 x+3 y) \mathbf{i}+(3 x+5 y) \mathbf{j}$
b) $\mathbf{F}(x, y)=\left(x^{3}+2 x y\right) \mathbf{i}+(4 x y-2 x) \mathbf{j}$
c) $\quad \mathbf{F}(x, y)=\left(y e^{x}+\cos y\right) \mathbf{i}+\left(e^{x}+x \sin y\right) \mathbf{j}$
3. Let C be a piecewise smooth curve in an open region that goes from the point $(2,3)$ to the point $(5,6)$, and $f(x, y)=x^{2} y$ is a potential function for a continuous vector field $\mathbf{F}(x, y)$. Find the work done by $\mathbf{F}(x, y)$ on an object moving along the path from $(2,3)$ to $(5,6)$.
4. Find a function f such that $\mathbf{F}=\nabla f$ and use it to evaluate $\int_{C} \nabla f \cdot d \mathbf{r}$ along the given curve C.
a) $\quad \mathbf{F}(x, y, z)=y z \mathbf{i}+x z \mathbf{j}+(x y+2 z) \mathbf{k}, C$ is the line segment from $(0,1,-3)$ to $(5,4,3)$
b) $\quad \mathbf{F}(x, y, z)=y^{2} \sin z \mathbf{i}+2 x y \sin z \mathbf{j}+x y^{2} \cos z \mathbf{k}, C: \mathbf{r}(t)=t^{2} \mathbf{i}+\cos t \mathbf{j}+t \mathbf{k}, 0 \leq t \leq \pi$
