Homework Section 16.6

1. Determine whether the points $P(-2,6,5)$ and $Q(7,3,15)$ lie on the surface given by $\mathbf{r}(u, v)=\langle u+3 v, 1+4 u-v, 5+u+v\rangle$.
2. Find a Cartesian equation for the given parametric surface and identify it.
a) $\quad \mathbf{r}(u, v)=(u-v) \mathbf{i}+(2-v) \mathbf{j}+(4+2 u-4 v) \mathbf{k}$
b) $\quad \mathbf{r}(s, t)=s \mathbf{i}+t \mathbf{j}+\left(s^{2}+t^{2}\right) \mathbf{k}$
c) $\mathbf{r}(u, v)=\langle u, u \sin 3 v, u \cos 3 v\rangle$
3. Find a parametric representation for the surface.
a) The hyperbolic paraboloid $z=x^{2}-2 y^{2}$.
b) The lower half of the ellipsoid $x^{2}+4 y^{2}+9 z^{2}=1$.
c) The sphere $x^{2}+y^{2}+z^{2}=9$.
d) The cylinder $x^{2}+y^{2}=4$ from $z=0$ and $z=3$.
4. Find an equation of the tangent plane to the given parametric surface at the specified point: $\mathbf{r}(u, v)=u \sin v \mathbf{i}+u^{2} \mathbf{j}+2 u \cos v \mathbf{k} ; u=1, v=\pi$.
5. Find the area of the surface.
a) The part of the plane $2 x+y+z=6$ that lies in the first octant.
b) The part of the hyperbolic paraboloid $f(x, y)=x^{2}-y^{2}$ that lies within the cylinder $x^{2}+y^{2}=4$.
c) The part of the cone $z=\sqrt{x^{2}+y^{2}}$ that lies between the planes $z=1$ and $z=4$.
d) The surface given by $\mathbf{r}(u, v)=u v \mathbf{i}+v^{2} \mathbf{j}+\frac{1}{2} v^{2} \mathbf{k}$, where $0 \leq u \leq 2,0 \leq v \leq 1$.
