Homework Section 16.7

- 1. Evaluate the surface integral.
 - a) $\iint_{S} z dS$, S is the part of the plane x + y + z = 2 that lies in the first octant.
 - b) $\iint_{S} y^{2} z^{2} dS$, S is the part of the cone $f(x, y) = \sqrt{x^{2} + y^{2}}$ that lies between the planes z = 1 and z = 4.
 - c) $\iint_{S} xdS$, S is the part of the paraboloid $x = y^2 + z^2$ that lies inside the cylinder $y^2 + z^2 = 4$. (**Hint**: use the rectangular form of dS with x =g(y,z)).
 - d) $\iint_{S} (x^{2} + y^{2} + z^{2}) dS$, *S* is the part of the cylinder $x^{2} + y^{2} = 4$ between the planes z = 0 and z = 3. (**Hint**: parameterize the cylinder and use the parametric form of *dS*).
- 2. Evaluate the flux integral $\iint_{S} \mathbf{F} \bullet \mathbf{N} dS$.
 - a) $\mathbf{F}(x, y, z) = \langle x, y, z \rangle$, *S* is the part of the plane x + y + z = 2 that lies in the first octant, and has upward orientation.
 - b) $\mathbf{F}(x, y, z) = z\mathbf{i} + x\mathbf{j} + \mathbf{k}$, *S* is part of the paraboloid $z = 9 x^2 y^2$ that lies above the square $0 \le x \le 1$, $0 \le y \le 1$, and has upward orientation.
 - c) $\mathbf{F}(x, y, z) = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$, S is the part of the cone $z = \sqrt{x^2 + y^2}$ between the planes z = 1z = 4 with downward orientation.
 - d) $\mathbf{F}(x, y, z) = -x\mathbf{i} + z\mathbf{k}$, *S* consists of the paraboloid $z = f(x, y) = x^2 + y^2$, $0 \le z \le 1$, and the disk $x^2 + y^2 \le 1$, z = 1. [Note: this requires evaluation of two integrals, and the paraboloid should be oriented downwards]
 - e) $\mathbf{F}(x, y, z) = y\mathbf{i} x\mathbf{j} + z\mathbf{k}$, *S* is the part of the sphere $x^2 + y^2 + z^2 = 9$ in the first octant with orientation toward the origin (**Hint**: use the parametric form of the flux integral).