Homework Section 16.7

1. Evaluate the surface integral.
a) $\iint_{S} z d S, S$ is the part of the plane $x+y+z=2$ that lies in the first octant.
b) $\iint_{S} y^{2} z^{2} d S, S$ is the part of the cone $f(x, y)=\sqrt{x^{2}+y^{2}}$ that lies between the planes $z=1$ and $z=4$.
c) $\iint_{S} x d S, S$ is the part of the paraboloid $x=y^{2}+z^{2}$ that lies inside the cylinder $y^{2}+z^{2}=4$. (Hint: use the rectangular form of $d S$ with $\mathrm{x}=\mathrm{g}(\mathrm{y}, \mathrm{z})$).
d) $\iint_{S}\left(x^{2}+y^{2}+z^{2}\right) d S, S$ is the part of the cylinder $x^{2}+y^{2}=4$ between the planes $z=0$ and $z=3$. (Hint: parameterize the cylinder and use the parametric form of $d S$).
2. Evaluate the flux integral $\iint_{S} \mathbf{F} \bullet \mathbf{N} d S$.
a) $\quad \mathbf{F}(x, y, z)=\langle x, y, z\rangle, S$ is the part of the plane $x+y+z=2$ that lies in the first octant, and has upward orientation.
b) $\quad \mathbf{F}(x, y, z)=z \mathbf{i}+x \mathbf{j}+\mathbf{k}, S$ is part of the paraboloid $z=9-x^{2}-y^{2}$ that lies above the square $0 \leq x \leq 1,0 \leq y \leq 1$, and has upward orientation.
c) $\mathbf{F}(x, y, z)=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}, S$ is the part of the cone $z=\sqrt{x^{2}+y^{2}}$ between the planes $z=1$ $z=4$ with downward orientation.
d) $\quad \mathbf{F}(x, y, z)=-x \mathbf{i}+z \mathbf{k}, S$ consists of the paraboloid $z=f(x, y)=x^{2}+y^{2}, 0 \leq z \leq 1$, and the disk $x^{2}+y^{2} \leq 1, z=1$. [Note: this requires evaluation of two integrals, and the paraboloid should be oriented downwards]
e) $\quad \mathbf{F}(x, y, z)=y \mathbf{i}-x \mathbf{j}+z \mathbf{k}, S$ is the part of the sphere $x^{2}+y^{2}+z^{2}=9$ in the first octant with orientation toward the origin (Hint: use the parametric form of the flux integral).
