Homework Section 16.8

1. Use a line integral to evaluate $\iint_{S}(\operatorname{curl} \mathbf{F}) \bullet \mathbf{N} d S$, where $\mathbf{F}(x, y, z)=-y z \mathbf{i}+x z \mathbf{j}+x y \mathbf{k}$ and S is the part of the paraboloid $z=5-x^{2}-y^{2}$ that lies above the plane $z=1$, oriented upward.
2. Use a surface integral (i.e. the right-hand side of Stokes' Theorem) to evaluate $\int_{C} F \bullet d \mathbf{r}$. In each case C is oriented counter-clockwise (as viewed from above) and bounds a surface, S.
a) $\quad \mathbf{F}(x, y, z)=\left(x+z^{2}\right) \mathbf{i}+\left(y+x^{2}\right) \mathbf{j}+\left(z+y^{2}\right) \mathbf{k}, C$ is the triangle with vertices $(1,0,0),(0,1,0)$ and $(0,0,2)$.
b) $\mathbf{F}(x, y, z)=e^{y} \mathbf{i}+e^{-y} \mathbf{j}+e^{z} \mathbf{k}, C$ is the boundary of the plane $x+3 y+3 z=3$ in the first octant.
c) $\quad \mathbf{F}(x, y, z)=y \mathbf{i}-x^{2} \mathbf{j}+z^{2} \mathbf{k}$ and C is the curve of intersection of the plane $x+z=1$ and the cylinder $x^{2}+y^{2}=1$.
3. Consider two surfaces, $S_{1}: z=\sqrt{1-x^{2}-y^{2}}$ and $S_{2}: z=1-x^{2}-y^{2}$, bounded below by the $x y$ plane. Suppose \mathbf{F} is a vector field over R^{3} whose components have continuous partial derivatives. Explain why $\iint_{S_{1}}(\operatorname{curl} \mathbf{F}) \bullet \mathbf{N} d S=\iint_{S_{2}}(\operatorname{curl} \mathbf{F}) \bullet \mathbf{N} d S$.
