Homework Section 16.8

- 1. Use a line integral to evaluate $\iint_{S} (\operatorname{curl} \mathbf{F}) \cdot \mathbf{N} dS$, where $\mathbf{F}(x, y, z) = -yz\mathbf{i} + xz\mathbf{j} + xy\mathbf{k}$ and *S* is the part of the paraboloid $z = 5 x^2 y^2$ that lies above the plane z = 1, oriented upward.
- 2. Use a surface integral (i.e. the right-hand side of Stokes' Theorem) to evaluate $\int_{C} F \bullet d\mathbf{r}$. In each case *C* is oriented counter-clockwise (as viewed from above) and bounds a surface, *S*.
 - a) $\mathbf{F}(x, y, z) = (x + z^2)\mathbf{i} + (y + x^2)\mathbf{j} + (z + y^2)\mathbf{k}$, *C* is the triangle with vertices (1,0,0), (0,1,0) and (0,0,2).
 - b) $\mathbf{F}(x, y, z) = e^{y}\mathbf{i} + e^{-y}\mathbf{j} + e^{z}\mathbf{k}$, *C* is the boundary of the plane x + 3y + 3z = 3 in the first octant.
 - c) $\mathbf{F}(x, y, z) = y\mathbf{i} x^2\mathbf{j} + z^2\mathbf{k}$ and *C* is the curve of intersection of the plane x + z = 1 and the cylinder $x^2 + y^2 = 1$.
- 3. Consider two surfaces, $S_1 : z = \sqrt{1 x^2 y^2}$ and $S_2 : z = 1 x^2 y^2$, bounded below by the *xy*plane. Suppose **F** is a vector field over R^3 whose components have continuous partial derivatives. Explain why $\iint_{S_1} (\operatorname{curl} \mathbf{F}) \cdot \mathbf{N} dS = \iint_{S_2} (\operatorname{curl} \mathbf{F}) \cdot \mathbf{N} dS$.