Homework Section 16.9

1. A vector field \mathbf{F} is shown. Determine whether $\operatorname{div} \mathbf{F}$ is positive or negative at P_{1} and P_{2} and label both points as either a source or a sink.

2. Use the Divergence Theorem to calculate the flux integral, $\iint_{S} \mathbf{F} \bullet \mathbf{N} d S$.
a) $\quad \mathbf{F}(x, y, z)=z x^{2} \mathbf{i}+\cos y \mathbf{j}+e^{x} \sin y \mathbf{k}, S$ is the surface of the box bounded by the planes $x=0, x=1, y=0, y=2, z=0$, and $z=1$. (Note that if you didn't use the Divergence Theorem, then you would have to sum the values of the flux integrals over all six faces of the box, a tedious calculation.)
b) $\quad \mathbf{F}(x, y, z)=y e^{z} \mathbf{i}+3 x^{2} y \mathbf{j}+3 y^{2} z \mathbf{k}, S$ is the surface of the solid bounded by the cylinder $x^{2}+y^{2}=1$ and the planes $z=-1$ and $z=2$.
c) $\quad \mathbf{F}(x, y, z)=z \mathbf{i}+y \mathbf{j}+x \mathbf{k}, S$ is the unit sphere. (This was the last example from the 16.7 lecture. It is also Example 4, section 16.7, from Stewart's $6^{\text {th }}$ Edition of Multivariable Calculus: Early Transcendentals). Note how much easier it is to calculate flux using the Divergence Theorem.)
3. Redo problem 2(d) from section 16.7 using the Divergence Theorem.
