Applications of Linear Systems

Goal: To solve application problems using a system of two equations and two unknowns.

Polya's Four steps in Problem Solving

(1) Read/understond problem (name unknowns) using units of measure)
(2) Develop a plan (set up equations))
(3) carry out plan (solve equation (s))
(4) look back (does answer make common)
et 3.3

Ex. Score: 0 of 1 pt HW Score: 0\% (0 of 7 pts)

The Coffee Counter charges $\$ 8.00$ per pound for Kenyan French Roast coffee and $\$ 10.00$ per pound for Sumatran coffee.

How much of each type should be used to make a 22 pound blend that sells for $\$ 9.00$ per pound?
(1) $\left\{\begin{array}{l}x=1 b s \text { of kenyan coffee } \\ y=1 b s \text { of sumatran coffee }\end{array}\right.$

(3) $-8(x+y=22)$

$$
\begin{aligned}
& 2 y=22 \\
& y=1116 s
\end{aligned}
$$

3.3

(4)

Doreen Schmidt is a chemist. She needs to prepare 28 ounces of a 13% hydrochloric acid solution. Find the amount of 14% solution and the amount of 7% solution she should mix to get this solution.

How many ounces of the 14% acid solution should be in the mixture?

$$
\begin{aligned}
& x=0 z \text { of } 14 \% \text { solution } \\
& y=0 z \text { of } 7 \% \text { solution } \\
& x+y=28
\end{aligned}
$$

$$
\begin{aligned}
& \text { ail from from }{ }^{2 \%} \\
& 14 \% \text { solution sontion }
\end{aligned}
$$

3.3
(6) Alvin paddled for 2 hours with a $6-\mathrm{km} / \mathrm{h}$ current to reach a campsite. The return trip against the same current took 8 hours.

Find the speed of the boat in still water.

$$
\text { Distance }=\text { Rate } \cdot \text { Time }
$$

$$
\begin{aligned}
& \text { let } Q=\text { speed of boat in still water }(\mathrm{km} / \mathrm{h}) \\
& \begin{aligned}
&(r-6) \cdot 8 \\
& x=\frac{(r+6) \cdot x}{x} \\
& \begin{aligned}
(r-6) 4 & =r+6 \\
4 r-24 & =r+6 \\
-r & -r
\end{aligned} \\
& \begin{aligned}
3 r-24 & =6 \\
+24 & +24
\end{aligned} \\
& 3 r=30 \\
& r=10 \mathrm{~km} / \mathrm{h}
\end{aligned}
\end{aligned}
$$

The boat goes $10 \mathrm{~km} / \mathrm{h}$ in still water.

