Solving Systems of Three Equations and Three Unknowns

Goal: Let's solve these things!
(ex) Solve

$$
\begin{aligned}
& E_{1} \quad 3 x+2 y+3 z=3 \\
& E_{2} \quad 4 x-5 y+7 z=1 \\
& E_{3} \quad 2 x+3 y-2 z=6
\end{aligned}
$$

(1) select 2 emus., eliminate 1 maknown. (2) select the un-used egn. and one of the others and eliminate same unknown

$$
-2 E_{3}+E_{2}
$$

$$
-4(x-6 y+4 z=-12
$$

$$
-2 E_{1}+3 E_{3}
$$

$$
4 x-5 y+7 z=1
$$

$$
\frac{-11 y}{-11}+\frac{11 z}{-11}=\frac{-11}{-11}
$$

$y=y-z=1$
(3) Solve resulting system of 2 egns., 2 unknowns

(4) Plug back into one of the original eqns. to find the last unknown

$$
\left\{\begin{array}{lc}
\begin{array}{ll}
3 x+2 y+3 z=3 \\
4 x-5 y+7 z=1 \\
2 x+3 y-2 z=6
\end{array} & 3 x+2(0)+3(-1)=3 \\
& 3 x-3=3 \\
3 x=6
\end{array}\right] \begin{aligned}
& (2,0,-1)
\end{aligned} \begin{gathered}
\text { represents the } \\
\text { intersection of } 3 \text { planes } \\
\text { in space given the } \\
\text { original egos. }
\end{gathered}
$$

b) E_{1}

$$
\begin{array}{ll}
E_{1} x+y+z=5 \\
E_{2} x-y+z=1 \\
E_{3} x-z=y+3 \\
-y & \longrightarrow E_{1} x+y+z=5 \\
E_{2} x-y+z=1 \\
x-y-z=3
\end{array}
$$

(1) $E_{1}+E_{3}$
(2)
c)

$$
\begin{aligned}
& \left.\varepsilon_{1} x\right)(-3 y-z=(4) \\
& \varepsilon_{2} x+5 y-z=2 \\
& \left.\varepsilon_{3}(-2 x)+(2 y)-(z)=-7\right)
\end{aligned}
$$

(1) $E_{1}+E_{2}$
(2)

$$
\begin{aligned}
& \frac{2 x}{2}+\frac{2 y}{2}=\frac{6}{2} \\
& x+y=3)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{-x}{-1} y=\frac{-3}{1} \\
& (x+y=3)
\end{aligned}
$$

(3) $\begin{aligned}-1(x+y & =3) \\ y+y & =3 \\ -x-y & =-13\end{aligned}$

