Special Factoring Formulas

Goal: To factor a difference of two perfect squares and a perfect square trinomial.

The Difference of Two Squares Formula

$$
A^{2}-B^{2}=(A+B)(A-B)
$$

Proof:

$$
\underbrace{\left(A^{2}\right)}_{\substack{A^{2}-B^{2} \\ A^{2+B}-(A-B+B \\ \text { Done }}}-B^{2}
$$

(ex) Factor
a) $x^{2}-49=(x+7)(x-1)$

$(x+7)(x-1)$

1^{2}	$=1$
2^{2}	$=4$
3^{2}	$=9$
\vdots	
12^{2}	$=144$
x^{2}	
x^{4}	$=x^{2} \cdot x^{5}$
x^{6}	$=x^{3} \cdot x^{3}$

b) $16 m^{n}-64 n^{2}$
(16) $(\underbrace{m^{2}-4 n^{2}}_{\left(\overparen{A^{2}}-B^{2}=(A+B)(A-B)\right.})$

c)

$$
\begin{aligned}
& a^{2} b^{2}=\frac{1}{4} \\
& A^{2}-B^{2}=(A+B)(A-B) \\
& A=a b, B=\frac{1}{2} \\
& \left(\left(a b+\frac{1}{2}\right)\left(a b-\frac{1}{r}\right)\right)
\end{aligned}
$$

d)

$$
\begin{aligned}
& \underbrace{1 a^{2}-8 a+16}_{(a-4)(a-4)}=b^{3} \\
& (a-4)^{2}-\overbrace{}^{B}) \\
& A=(a-4), \quad B=A^{2} \\
& (\overbrace{(a-4)}^{A}+\tilde{b})((\overbrace{a-4}^{A})-\tilde{b}) \\
& (a-4+b)(a-4-b)
\end{aligned}
$$

The perfect square Trinomial Factoring Formula

$$
\begin{aligned}
& A^{2}+2 A B+B^{2}=(A+B)^{2} \\
& A^{2}-2 A B+B^{2}=(A-B)^{2}
\end{aligned}
$$

(ex) Factor
a)

$$
\underbrace{(\underbrace{(5 x+3 y)^{2}}_{3 x y}(5 x+3 y)}_{\underbrace{25 x^{2}+30 x y+9 y^{2}}_{\text {reverse FOIV }}} /
$$

$$
\left(A^{2}+2 A B+B^{2}=(A+B)^{2}\right.
$$

$$
A=5 x, B=3 y
$$

b)

$$
\begin{aligned}
& 49 p^{2}=84 p q+36 q^{2} \\
& A=7 p, B=6 q \\
& (7 p-6 q)^{2} \\
& 21 B=2(7 p)(6 q)
\end{aligned}
$$

CW
Factor
(1)

$$
\begin{aligned}
& 9 x^{4}=25 x^{2} \\
& x^{2}(3 x+5)(3 x-5)
\end{aligned}
$$

3

$$
\begin{gathered}
64 m^{2}+48 m n+9 n^{2} \\
(8 m+3 n)^{2}
\end{gathered}
$$

