Special Factoring Formulas

Goal: To factor a difference of two perfect squares and a perfect square trinomial.

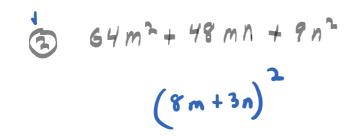
The Oifference of Two Squares Formula $A^{2}-B^{2}=(A+B)(A-B)$ $\frac{\rho_{roof}}{A^2 - AB + AB - B^2}$ A²-B² Done (i) $x^{n} = 49 = (x + 7)(x - 1)$ (i) $x^{n} = 49 = (x + 7)(x - 1)$ (i) $x^{n} = 49 = (x + 7)(x - 1)$ (i) $x^{n} = 49$ (i) $x^{n} = 4$ b) $16 m^{2} - 64 n^{2}$ $16 (m^{2} - 4 n^{2})$ $(A)^{2} - B^{2} = (A + B)(A - B)$

$$A = m, B = 2n$$

(16 (m+2n)(m-2n)

c)
$$a^{2}b^{2} = \frac{1}{4}$$

 $A^{2} - B^{2} = (A + B)(A - B)$
 $A = ab, B = \frac{1}{2}$
 $(ab + \frac{1}{2})(ab - \frac{1}{2})$


d)
$$|a^{n} - \$a + /6 - b^{n}$$

 $(a - 4)(a - 4)$ $A^{n} - B^{n} = (A + B)(A - B)$
 $(a - 4)^{n} = (b^{n})$
 $A = (a - 4), B = b$
 $(a - 4) + b(a - 4 - b)$

$$A^{2} + 2AB + B^{2} = (A+B)^{2}$$

 $A^{2} - 2AB + B^{2} = (A-B)^{2}$

Factor
(a)
$$25x^{2} + 30xy + 9y^{2}$$

 $(5x + 3y)(5x + 3y) / (A^{2}+2AB+B^{2}=(A+B)^{2})$
 $+15xy$
 $(5x+3y)^{2}$
 $A=5x, B=3y$
 $(5x+3y)^{2}$
 $2AB=30xy / U$
 $using formula$

b)
$$49 p^{2} - 84pq + 36 q^{2}$$

 $A = 7p$, $B = 6q$
 $(7p - 6q)^{2}$
 $2 AB = 2(7p)(6q)/$

$$\frac{CW}{D} = \frac{Factor}{9x^{4} - 25x^{2}} \\ \times^{2}(3x+5)(3x-5)$$

