Even More Fun with Factoring

Goal: To factor polynomials that are the sum or difference of two cubes.

Perfect Cubes

$$
\begin{array}{ll}
1^{3}=1 & 7^{3}=343 \\
2^{3}=8 & ! \\
3^{3}=27 & ! \\
4^{3}=64 & \\
5^{3}=125 & 6^{3}=216
\end{array}
$$

The sum/Difference of Two cubes Formulas

Done
(ex) Factor
a) $x=27$

$$
A^{3}-B^{3}=\underbrace{(A \downarrow B)\left(A^{2}+A B+B^{2}\right)}
$$

$$
\begin{aligned}
A & =x, B=3 \\
& =(x-3)\left(x^{2}+3 x+9\right)
\end{aligned}
$$

b)
$16 p^{3}+2 q^{3}$

$$
2(2 p+q)\left((2 p)^{2}-2 p q+q^{2}\right)
$$

$$
A=C P, B=(9
$$

$$
\begin{aligned}
(2 p)^{(3)} & =2 p \cdot 2 p \cdot 2 p \\
& =8 p^{3}
\end{aligned}
$$

$$
2(2 p+q)\left(4 p^{2}-2 p q+q^{2}\right)
$$

$$
=8 p^{3}
$$

c) $\underbrace{\underbrace{25}_{B^{3}}}_{A^{3}}$

$$
\begin{aligned}
& A^{3}-B^{3}=\widetilde{(A-B)}\left(\widetilde{A}^{2}+\widetilde{A B}+B^{2}\right) \\
& A=5 C^{(2)}, B=\frac{1}{2} d
\end{aligned}
$$

$$
\left(5 c^{2}-\frac{1}{2} d\right)\left(\left(5 c^{2}\right)^{(2)}+\frac{5}{2} c^{2} d+\left(\frac{1}{2} d\right)^{2}\right)
$$

$$
\left(\left(5 c^{2}-\frac{1}{2} d\right)\left(25 c^{4}+\frac{5}{2} c^{2} d+\frac{1}{4} d^{2}\right)\right.
$$

Factoring Guidelines (section 5.7)
(1) Factor out GCF first, if necessary
(2) Look at the number of terms,
a) Two terms " try difference of two squares first, sum/diff. of two cubes and.
b) Three terms - try reverse foil.
c) Four terms = try factoring by grouping.
c) Four terms = try factoring by grouping.
(3) Factor completely,
(4) check by multiplying back out.

