Division of Polynomials

Goal: To long divide polynomials
(ex) Long Division Review

$$
689 \div 9
$$

Quotient: 76
Remainder: 3
check: $9 \cdot 76+3=687 \mathrm{~V}$

$$
\begin{aligned}
& \text { (divisor) (quotient) }+R=\text { dividend } \\
& \frac{687}{9}=76 \frac{3}{9}=76 \frac{1}{3} \quad 76+\frac{1}{3}
\end{aligned}
$$

(Dx) long divide
a) $\left(x^{2}-6 x+9\right) \div(x-3)$

$$
\frac{x^{2}-6 x+9}{x-3}
$$

$Q: x-3$
Q. \cap

$u \cdot x-z$
ancoriv
$R: O$
check: $(x-3)(x-3)+0$

$$
=x^{2}-6 x+9
$$

b) $\left(x^{2}+5 x-9\right) \div(x-2)$

$x-2$

$$
\begin{array}{|l}
\begin{array}{|c|c|}
\hline x^{2}+5 x-9 \\
-2 x
\end{array} \\
\frac{-7 x-9}{2(5}
\end{array}
$$

Check:

$$
\begin{aligned}
& (x-2)(x+7)+5=x^{2}+5 x-9 \\
& x^{2}+5 x-14+5 \\
& x^{2}+5 x-9 \\
& \frac{x^{2}+5 x-9}{x-2}=x+7+\frac{5}{x-2}
\end{aligned}
$$

c) $\left(2 x^{2}-x-1\right) \div(2 x-1)$

$$
\left(2 x - 1 \longdiv { 2 x ^ { 2 } - x - 1 }\right.
$$

$$
\frac{\frac{2 x^{2}+x}{0(-1}}{\frac{0}{-1}} \quad \frac{2 x^{2}-x-1}{2 x-1}=x+\frac{-1}{2 x-1}
$$

check: $(2 x-1) x-1=2 x^{2}-x-1$

$$
2 x^{2}-x-1
$$

$$
\begin{gathered}
\text { d) }\left(3 x^{4}+2 x^{3}=\frac{\left.11 x^{2}-2 x+5\right) \div\left(x^{2}-2\right)}{\left(3 x^{2}+2 x-5+\frac{2 x-5}{x^{2}-2}\right)}\right. \\
\begin{array}{c}
x^{2}+0 x-2 \sqrt{\frac{3 x^{4}+2 x^{3}-11 x^{2}-2 x+5}{-3 x^{3}+6 x^{2}}} \\
\frac{2 / x^{3}-5 x^{2}-2 x}{-2 / x^{3}+0 x^{2}+4 x} \\
\frac{-5 / x^{2}+2 x+5}{+8 x^{2}+5 x+10}
\end{array}
\end{gathered}
$$

You Try it!

$$
\begin{gathered}
\left(18 x^{4}-27 x^{5}-3 x^{2}\right) \div 9 x^{3} \\
18 x^{6}-27 x^{5}-3 x^{2}
\end{gathered}
$$

