Solving Formulas and Variation
Goal: To solve formulas for a specified variable and to solve variation applications.

Two Principles to Think About when Solving Egos.
(1) The Reverilbility Principle

Any op con be undone by applying reverse op (inverse op).
(2) The Balance Principle

Any op applied to one side must also be applied to the other side.
(40) solve for the specified variable
a)

$$
\begin{aligned}
& \frac{W}{W}=\frac{D}{d} ; W \\
& \frac{W}{W} \cdot \infty=\frac{D}{d} \cdot \frac{W}{1} \\
& W=\frac{D W}{d}
\end{aligned}
$$

$$
\text { b) } \begin{aligned}
\frac{1}{R} & =\frac{1}{r_{1}}+\frac{1}{r_{2}} ; R \\
R r_{1} r_{2} \cdot \frac{1}{R} & =\left[\frac{r_{1}}{r_{1}}+\frac{r_{1}}{r_{2}}\right] R R R_{1} r_{2} \\
r_{1} r_{2} & =\frac{R r_{1} r_{2}}{r_{1}}+\frac{R r_{1} r_{2}}{r_{2}}
\end{aligned}
$$

$$
\begin{aligned}
& r_{1} r_{2}=R r_{2}+R r_{1} \\
& \frac{r_{1} r_{2}}{\left(r_{2}+r_{1}\right.}=\frac{R \cdot\left(r+r_{1}\right)}{\left(r_{2}+r_{1}\right)} \rightarrow R_{1}=\frac{r_{1} r_{2}}{r_{1}+r_{2}}
\end{aligned}
$$

c)

$$
\begin{aligned}
&c) \\
& E R=e(R+r) \\
& E R=e R+e r \\
&-e R \quad-e R \\
& E R-e R=e r \\
& \frac{R \cdot(E R)}{E R}=\frac{e r}{E-e}
\end{aligned} R\left(R=\frac{e r}{E-e}\right.
$$

$$
\begin{aligned}
& \text { d) } \frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1 ; a^{2} \\
& a^{2} b^{2}\left(\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}\right)=1 \cdot a^{2} b^{2} \\
& \begin{array}{l}
\frac{a^{2} x+b^{2} y^{2}=a^{2} b^{2}-a^{2} x^{2}}{-x^{2}} \\
\left(\frac{b^{2} y^{2}}{b^{2} y^{2}}=\frac{a^{2} b^{2}-a^{2} x^{2}}{b^{2}-x^{2}\left(b^{2}-x^{2}\right)}\right. \\
\left.b^{2}-x^{2}\right)
\end{array}
\end{aligned}
$$

$$
a^{2}=\frac{b^{2} y^{2}}{b^{2}-x^{2}}
$$

Guidelines for Solving a Rational Equation for a Specified Variable

Note that the following steps are only applied if necessary:
$\rightarrow 1$. Clear the denominators by multiplying through by the LCD.
$\rightarrow 2$. Distribute to get rid of parentheses.
$\longrightarrow 3$. Get every term with the specified variable on one side of the equal sign, everything else on the other side.
4. Factor out the specified variable.
\rightarrow
5. Multiply or divide as needed in order to solve for the specified variable.

Variation

Three Key Phrases:

1. " y varies directly to $\mathrm{x}^{\prime \prime}$ means $\mathrm{y}=\stackrel{\downarrow}{\mathrm{k}}$, where k is a constant.
2. " y varies inversely to x "means $y=k / x$, where k is a constant.
3." z varies jointly to x and $y^{\prime \prime}$ means $z=k x y$, where k is a constant.

b) y varies inversely as x

c) zanies joint to x and y.

$$
\begin{aligned}
z & =k \times y \\
\frac{1600}{80} & =\frac{k \cdot 5 \cdot 80}{80} \\
20 & =k \cdot 5 \\
k & =4
\end{aligned}
$$

$\left.\begin{array}{l}\text { 62. Weight on Mars. The weight } M \text { of an object on } \\ \text { Mars varies directly as its weight } E \text { on Earth. A per- } \\ \text { son who weighs } 95 \mathrm{lb} \text { on Earth weighs } 38 \mathrm{lb} \text { on } \\ \text { Mars. How much would a } 100 \text {-lb person weigh on } \\ \text { Mars? }\end{array}\right\}$ p. 417

80. Intensity of a signal. The intensity I of a television
 at a distance of 2 km , what is the intensity 6.25 km from the transmitter?

$$
\left.\begin{array}{rl}
y & =\frac{k}{x} \\
I & =\frac{k}{d^{2}} \\
25 & =\frac{k}{2^{2}}
\end{array}\right\} \begin{aligned}
& \frac{k}{4}=25 \\
& k=100 \\
& I=\frac{100}{d^{2}} \\
& I=\frac{100}{(6.25)^{2}} \quad \mathrm{k} / \mathrm{m}^{20}
\end{aligned}
$$

