The Quadratic formula

Goal: to use the quadratic formula to solve quadratic equations.
For any quadratic conation equation of the
form $a x^{2}+6 x+c=0$ when a, b, and
a ane constants with a to, the solutions
arc ..."

$$
x=\frac{-b \pm \sqrt{b^{2}-1 a c}}{2 a} \text { quadratic } \begin{gathered}
\text { formula } \\
\hline
\end{gathered}
$$

(ex) Solve

$$
\begin{array}{l|}
\begin{array}{l}
\begin{array}{l}
1 x^{2}=10 x-22 \\
+10 x+22 \\
+10 x+22
\end{array} \\
1 x^{2}+10 x+22=0 \\
a=1, b=10, c=22
\end{array} \\
x=\frac{-10 \pm \sqrt{10^{2}-4(1)(22)}}{2(1)} \\
x=\frac{-10 \pm \sqrt{100-88}}{2} \\
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
x=\frac{-10 \pm \sqrt{102}}{2}
\end{array} \quad \begin{array}{r}
x=\frac{-10 \pm 2 \sqrt{3}}{2} \\
=\frac{x \cdot(-5 \pm \sqrt{3})}{x \cdot 1} \\
=-5 \pm \sqrt{3}
\end{array}
$$

b) $5^{2} y^{2}+12 y=1=0$

$$
a=5, b=12, c=-1 \quad \left\lvert\, \quad y=\frac{-b \pm \sqrt{(a-4 a c}}{2 a}\right.
$$

$$
y=\frac{-12 \pm \sqrt{12^{2}-4(5)(-1)}}{2(6)}
$$

$$
r=\frac{-12 \pm \sqrt{14 y+20}}{10}
$$

$$
y=\frac{-12 \pm \sqrt{164}}{10}
$$

$$
\lambda y=-6 \pm \sqrt{41}
$$

$$
\begin{aligned}
& y=\frac{-12 \pm \sqrt{164}}{10} \\
& y=\frac{-1 r \pm 2 \sqrt{41}}{10} \\
& y=\frac{x(-6 \pm \sqrt{10})}{50}
\end{aligned}
$$

$$
\text { c) } \begin{aligned}
& 2+\frac{1}{x^{4}}-\frac{4}{x} \\
& \overbrace{\left(2+\frac{1}{x^{2}}\right)}^{2+\frac{4}{x}} \cdot x^{2} \quad \begin{array}{l}
x=\frac{-b \pm \sqrt{b^{2}-4 c}}{2 a} \\
2 x^{2}+1=4 x \\
-4 x=\frac{4 \pm \sqrt{16-k \cdot}}{4} \\
x=\frac{4 \pm \sqrt{8}}{4}
\end{array} \\
& x=\frac{4 \pm \sqrt{3}}{4}
\end{aligned}
$$

$$
=\frac{\mu(2 \pm \sqrt{5})}{2 t}
$$

$$
=\frac{2+\sqrt{3}}{2}
$$

≈ 0.29 of 1.101
d) $3 x^{2}+2 x+4=0$

$$
x=\frac{-b \pm \sqrt{b^{2}-1 / a c}}{2 a}
$$

$$
\begin{aligned}
& x=\frac{-2 \pm \sqrt{4-4(3)(y)}}{6} \\
& x=\frac{-2 \pm \sqrt{-44}}{6}
\end{aligned}
$$

$$
x=\frac{-2 \pm 2 i \sqrt{11}}{6}
$$

$$
=\frac{1 f(-1 \pm i \sqrt{11})}{36}
$$

$$
=\frac{-1 \pm i \sqrt{11}}{3}
$$

(ex) Find the x and y-intercepts of

$$
\begin{aligned}
& \underbrace{f(x)}_{y}=5 x^{2}+12 x-1 \\
& y=5 x^{2}+12 x-1
\end{aligned}
$$

$$
\begin{aligned}
& y-\text { int }(\operatorname{set} x=0) \quad x-\operatorname{int}(\operatorname{set} y=0)
\end{aligned}
$$

$$
\begin{aligned}
& \left(\frac{-6-\sqrt{41}}{5}, 0\right)\left(\frac{-6+\sqrt{41}}{5}, 0\right)
\end{aligned}
$$

