Applications of Quadratic Equations
Goals:

1. To solve formulas for a specified unknown.
2. To solve applications involving quadratic equations.
(4) Solve for the specified variable. Assume all variables are nonnegative.

$$
\begin{aligned}
& \begin{array}{l}
\text { no } r^{\prime} \text { in eq. } \\
\text { solve by taking } \\
\text { roots. }
\end{array} \\
& \frac{3 V}{\pi n}=r^{n} \\
& \sqrt{r^{2}}=\sqrt{\frac{3 k}{\pi h}} \\
& r=\sqrt{\frac{2 v}{\pi h}}
\end{aligned}
$$

b) $\frac{A}{\rho}=\frac{p\left(n^{2}+2 n+1\right)}{\rho}$, for r

d) $\begin{aligned} & V \\ & -V\end{aligned}+\cdots V^{2}-2 h d r_{1}$ for

$$
\begin{aligned}
0= & r r^{2}-(2 h d) l v-V \\
& a=r, b=-2 h d, c=-V
\end{aligned}
$$

$$
v=\frac{2 h d \pm \sqrt{(-\alpha)^{2}-4 r(-V)}}{2 r}
$$

$$
V=\frac{2 h d \ddagger \sqrt{\left(4 h^{2} d^{2}+4 r V\right.}}{2 r}
$$

$$
\begin{aligned}
& \text { c) } \begin{array}{ll}
E \\
-e & -(4) \sqrt{x}
\end{array}+e \text { for } x \\
& \frac{E-e}{4}=\frac{4 \sqrt{x}}{4} \\
& \left(\frac{E-e}{4}\right)^{2}=(\sqrt{x})^{2} \\
& x=\left(\frac{E-e}{4}\right)^{2}
\end{aligned}
$$

* Guidelines for Solving a formula for a Specified Variable

Note that the following steps are only applied if necessary:
$\rightarrow 1$. Clear the denominators and radicals and combine like terms.
$\rightarrow 2$. Distribute to get rid of parentheses.
$\rightarrow 3$. If the equation is linear with respect to the specified variable, then solve using previous methods. (no variable ${ }^{2}$)
$\rightarrow 4$. If the equation is quadratic with respect to the specified variable, then solve either by taking roots or the quadratic formula.

Ex. The height of a building is 566 meters. How long would it take an object to hit the ground if it were thrown from the top of the building with an initial velocity of 5 meters/sec?

Ex. Don's Dodge Durango travels (1085)miles. If he had gone 8 mph factor then the trine manila have taken 2 hourclacetime Find tho
faster, then the trip would have taken 2 hours less time. Find the average speed of the Durango.

Ex. Two different pipes can fill a swimming pool. When turned on at the same time, they fill pool in 8.4 hours. The smaller pipe alone takes 7 hours longer than larger pipe to fill the pool. How long would it take the larger pipe to fill the pool alone?

$$
\begin{aligned}
& t+7
\end{aligned}
$$

So, it takes the larger pipe 14 hrs. to finish.

