Inverse and Composite Functions

Goals:

- → 1. To identify a one-to-one function using the Horizontal Line Test.
- \rightarrow 2. To find the inverse of a given function.
- → 3. To compose functions.

Definitions:

1. A function is **one-to-one** if none of its ordered pairs have the same second coordinate.

2. The **inverse** of a function, f, is the set of all ordered pairs obtained by reversing the coordinates of each ordered pair that comprises f.

ex	$(f) = \{ (0, \frac{1}{2}), (0, \frac{1}{2}), (0, \frac{1}{2}), (0, \frac{1}{2}) \}$	
D: (1,3,5,7) R (52,4,63)	$(f^{-1}) = \{(2, 1), (4, 3), (4, 3), (6, 5), (2, 7)\}$	
"f -	inverse " f' Not a feta.	

Notes:

- → 1. Every one-to-one function has an inverse that is also a function.
- → 2. The domain and range of a one-to-one function and its inverse

function are flip-flopped.

Horizontal Line Test: If a horizontal line crosses the graph of a function at more than one point, then the function is not one-to-one.

(ex) Find the inverse: a) f(x) = 3x - 4m= 3 () check to see if f is Itol. f is I to I by HLT. D Replace f(x) V/ Y y = 3x - 4switch x and y $\chi = 3y - 4$ solve for y $3\gamma - 4 = \chi$ +4 +4 y = x + y

Section 9.1 Inverse and Composite Functions Page 2

$$\frac{3y}{3} = \frac{x+4}{3}$$

$$y = \frac{x+4}{3} = \begin{bmatrix} \frac{1}{3} & x+4\\ \frac{3}{3} & \frac{3}{3} \end{bmatrix}$$

$$(y) = \frac{1}{3} & x+\frac{4}{3}$$

$$(y) = \frac{1}{3} & x+\frac{4}{3}$$

$$(f-inverse of x'')$$

$$(f^{-i}(x)) = \frac{1}{3} & x+\frac{4}{3}$$

Section 9.1 Inverse and Composite Functions Page 3

$$\frac{2y^{3}}{2} = \frac{x+5}{2}$$

$$\frac{2y^{3}}{2} = \frac{x+5}{2}$$

$$\frac{5}{9}(x) = \sqrt[3]{\frac{x+5}{2}}$$

$$\frac{5}{9}(x) = \sqrt[3]{\frac{x+5}{2}}$$

$$f(x) = \alpha (x - b)^{x} + k$$

$$f(x) = \alpha (x - b)^{x} + k$$

$$f(p) = [3p^{2} - 2], p \ge 0$$

$$f(p) = f(x)$$

Composite Functions

$$g \circ f = "g \ composed \ with f"$$

 $(g \circ f)(x) \stackrel{def}{=} g[f(x)]$
function of a function.

Section 9.1 Inverse and Composite Functions Page 4

function of a function.

Let f(x) = -2(x) + 1 and $g(x) = (x^2 + 3)$. (ex) Find ... "f composed with g of 2" a) $(f \circ g)$ (2) $de^{f} = f\left[g(\lambda)\right]$ $g(2) = (2)^{2} + 3$ = (7) = f(7) = -2(7) + 1= -14 + 1= (-13) $\begin{array}{c} c_{0}m_{1}^{0,s_{0}} & c_{1}m_{1}^{0,s_{0}} \\ (f_{0},g_{0}) \\ (f_{0},g$ work from inside out def = f[gos] $= f \left[(x^{2}+3) \right]$ = -2 (x^{2}+3) +1 $= -2x^{2}-6+1$ = $(-2x^{2}-5)$

c) (g of)(x)

$$de^{f} = g[f(x)]$$

$$= g[-1x+1]$$

$$= (-1x+1)^{h} + 3$$

$$= (-1x+1)^{h$$

(ex) use function composition to show
that
$$f(x) = \frac{x+6}{3}$$
 and $g(x) = \frac{3x-6}{3}$
are inverses.
 $f[g(x)]$
 $= f[\frac{3x-6}{3}]$
 $= \frac{(3x-6)+6}{3}$
 $= \frac{x+6}{-6}$

Section 9.1 Inverse and Composite Functions Page 6

$$3 = \frac{3 \times 3}{3} = \times +6 - 6$$
$$= \times \sqrt{3}$$
$$f and g are inverses.$$

(a) Let
$$H(x) = \sqrt{2 + 1}$$
. Find f and g
such that $f(g(x)) = H(x)$.

$$let \left(g(x) = 2 + 1\right)$$

$$f(x) = \sqrt{x}$$

$$u \text{ outer function}$$

$$f(g(x)) = f(2x+1) = \sqrt{2x+1}$$

(ex) The function
$$\overline{I}(f) = i\lambda f$$
 gives the
number of inches in f feet. The
function $(f(y) = 3y)$ gives the
number of feet in (y) yards. What
does $\overline{I}(f(y))$ represent?
output of input y yords
I nches
The number of inches in y yords.
(ex) convert (10) yords to inches.
 $\overline{I}(f(y))$
 $= \overline{I}(f(y))$

Section 9.1 Inverse and Composite Functions Page 7

$$\frac{c w 9.1}{0} = 4x^{2} - 3 \qquad g(x) = 2x - 7$$

find $(f \circ g)(x) = f[g(x)]$

$$= f[2x - 7]$$

$$= 4(2x - 7)^{2} - 3$$

$$= 4(4x^{2} - 28x + 49) - 3$$

$$= 16x^{2} - 112x + 196 - 3$$

(2) Let
$$H(x) = 2(x-3)^5$$
 Find $f(x)$
and $g(x)$ such that $H(x) = g(x)$
 $f(x) = (x-3)$
 $g(x) = 2x^5$

Section 9.1 Inverse and Composite Functions Page 8