Inverse and Composite Functions

Goals:

$\rightarrow 1$. To identify a one-to-one function using the Horizontal Line Test.
$\rightarrow 2$. To find the inverse of a given function.
$\rightarrow 3$. To compose functions.

Definitions:

1. A function is one-to-one if none of its ordered pairs have the same second coordinate.

$$
f(x)=a x^{2}+b x+c
$$

$f(x)=|x|$

Not 1 to

2. The inverse of a function, f, is the set of all ordered pairs obtained by reversing the coordinates of each ordered pair that comprises f.

Notes:

$\rightarrow 1$. Every one-to-one function has an inverse that is also a function.
$\rightarrow 2$. The domain and range of a one-to-one function and its inverse
function are flip-flopped.

Horizontal Line Test: If a horizontal line crosses the graph of a function at more than one point, then the function is not one-to-one.

$$
y=m x+b
$$

I toll by HLT

Not Ital by HLT
(ex) Find the inverse:
a) $f(x)=3 x-4$
\checkmark
(1) check to see if f is 1 to l. f is 1 to 1 by HLT.
\checkmark
(2) Replace $f(x) w / y$

$$
y=3 x-4
$$

Switch x and y

$$
x=3 y-4
$$

(4) Solve for y

$$
\begin{aligned}
& 3 y-4=x \\
&+4
\end{aligned} \quad \begin{aligned}
& 3 y \\
& \frac{3 y}{2}=\frac{x+4}{3}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{3 y}{3}=\frac{x+4}{3} \\
& y=\frac{x+4}{3}=\frac{1}{3} x+\frac{4}{3}
\end{aligned}
$$

$$
y=\frac{1}{3} x+\frac{4}{3}
$$

(5) Replace $y \quad v / f^{-1}(x)$

$$
f^{-1}(x)=\frac{1}{3} x+\frac{4}{3}
$$

b) $\quad g(x)=2 x^{3}-5$
(1)

x	$g(x)$
-2	-21
-1	-7
0	-5
1	-3
2	11

$$
\begin{aligned}
& 2(-2)^{3}-5=-16-5 \\
& 2(-1)^{3}-5=-7 \\
& 9 \text { is } 1 \text { tol } \\
& \text { by HLT. }
\end{aligned}
$$

(2) $y=2 x^{3}-5$
(3) $x=2 y^{3}-5$
(4) $\begin{aligned} & 2 y^{3}-5=x \\ & +5\end{aligned} \frac{2 y^{3}=x+5}{2}$

$$
\begin{aligned}
& \frac{2 y^{3}}{2}=\frac{x+5}{2} \\
& \sqrt[3]{y^{3}}=\sqrt[3]{\frac{x+5}{2}} \\
& y=\sqrt[3]{\frac{x+5}{2}}
\end{aligned}
$$

$$
f(x)=a\left(x-(h)^{2}+k\right.
$$

c) $f(p)=3 p^{(2)} 2, p \geq 0$
(1)

p	$y=f(x)$
1	1
$v(0$	$-2)$
-1	1

Not Ital by HLT.

Composite Functions
$g \circ f=" g$ composed with f "

$$
(g \circ f)(x) \stackrel{\text { def }}{=} g[f(x)]
$$

function of a function.
function of a function.
(ex) Let $f(x)=-2(x)+1$ and $g(x)=x^{2}+3$.
Find ...
a) $(f \circ g)\left(\begin{array}{l}\downarrow \\ (2)\end{array}\right.$
"f composed with g of 2"
def

$$
\begin{aligned}
& \text { def } f[\underbrace{g(2)}_{1}] \\
& =f(7) \\
& =-2(7)+1 \\
& =-14+1 \\
& =-13
\end{aligned}
$$

$$
f(x)=-2\left(x+1 \quad g(x)=x^{2}+3\right.
$$

def
work from
$=f\left[\frac{j^{\text {p pu }}}{g(x)}\right]$ inside out

$$
\begin{aligned}
& =f\left[x^{2}+3\right] \\
& =-2\left(x^{2}+3\right)+1 \\
& =-2 x^{2}-6+1 \\
& =-2 x^{2}-5
\end{aligned}
$$

C) $(g \circ f)(x)$

$$
\begin{aligned}
& \text { def } \\
& =g\left[f^{\sim}(x)\right] \\
& =g[\underbrace{2 x+1}] \\
& =(-2 x+1)^{2}+3 \\
& =4 x^{2}-4 x+1+3 \\
& =4 x^{2}-4 x+4
\end{aligned}
$$

Note: For inverse functions, f and f^{-1}, \ldots Big Property true of were talking inverse function

$$
\begin{aligned}
& \left(f \circ f^{-1}\right)(x)=f\left[f^{-1}(x)\right]=x=f^{-1}[f(x)]=\left(f^{-1} \circ f\right)(x) \\
& \text { find } x>0 \text {. } \\
& f(x)=\sqrt{x} \\
& x^{2}=9 \\
& g(x)=x^{2} \\
& \sqrt{x^{2}}=\sqrt{9} \\
& x=3
\end{aligned}
$$

(ex) Use function composition to show that $f(x)=\frac{(x)+6}{3}$ and $g(x)=3 x-6$ are inverses.

$$
\begin{array}{rl|l}
& f[g(x)] & \\
= & f[f(x)] \\
= & \frac{(3 x-6)+6}{3} & \\
= & 9\left[\frac{x+6}{3}\right] \\
= & \frac{3 x}{2} & =x\left(\frac{x+6}{x}\right)-6 \\
= & x+6-6
\end{array}
$$

$=x+6-6$
$=x$
f and g are inverses.
 such that $f[g(x)]=H(x)$.

$$
\begin{aligned}
& \text { let } \begin{array}{l}
g(x)=2 x+1 \\
f(x)=\sqrt{区}
\end{array} \quad \text { "inner function" } \\
& f[g(x)]=f(2 x+1)=\sqrt{2 x+1}
\end{aligned}
$$

(ex) The function $\frac{I}{1}(f)=12 f$ gives the number of inches in f feet. The function $f(y)=3 y$ gives the number of feet in y ards. What does $I[f(y)]$ represent?
out put of input y words
niches
The number of inches in y yards.
(ex) convert (10)yords to inches.

$$
\begin{aligned}
& I[f(y)] \\
= & I[\underbrace{f(10)}]
\end{aligned}
$$

$$
\begin{aligned}
& =I[f(10)] \\
& =I[3.10)] \\
& =\frac{\psi}{1}[30] \\
& =12.30 \\
& =360 \text { inches }
\end{aligned}
$$

CW 9.1
(1) $f(x)=4 x^{2}-3 \quad g(x)=2 x-7$

$$
\text { find } \begin{aligned}
(f \circ g)(x) & =f[g(x)] \\
& =f[2 x-7] \\
& =4(2 x-7)^{2}-3 \\
& =4\left(4 x^{2}-28 x+49\right)-3 \\
& =16 x^{2}-112 x+196-3 \\
& =16 x^{2}-112 x+193
\end{aligned}
$$

(2) Let $H(x)=2\left(x^{f(x)} x^{5}\right.$ Find $f(x)$ and $s(x)$ such that $H(x)=g(f(x)$

$$
\begin{aligned}
& f(x)=x-3 \\
& g(x)=2 \frac{1}{x}
\end{aligned}
$$

