Logarithmic Functions

Goals:

- 1. To evaluate log functions
- 2. To graph log functions
- 3. To convert between forms
- 4. To use in apps

- Notes: $0f(x) = log_A x$ is a function. (a) $y = log_A(x)$ and $y = A^A$ are inverses. $L_y = \frac{1}{a^Y} = x^A$
- (convert from exponential to log form or vice-versa

c) V^{X+Y}=u

x+y = logv (v-)

d) V = logg(W)

e) 10910 (x+b) = C

10 c = x+b

() A symptote:
$$x = 0$$
 (y-axis)
(a) Domain: (0, ∞)
(b) Range: (- ∞ , ∞)
Properties of logs and exponents
(a¹:a) () log_a = 1
 $a^{2}: 1$ (b) $log_{a}(1) = 0$
 $a^{3}: a^{5}$ (c) $log_{a}(a^{5}) = x$
(f) $a^{3}: a^{3}$ (liff $x = y$, $a \neq 0, 1, a > 0$
Signiment

(ex) solut
a)
$$\log_{y} x = 3$$
 b) $\log_{9} 8 = 2x+1$
 $x = 4^{3}$ $y^{2x+1} = 8$
 $x = 64$ $(2^{1})^{2x+1} = 2^{3}$
 $2^{(x+1)} = 2^{3}$
 $4^{(x+1)} = 3$
 $4^{(x+1)} = 3$
 $y^{(x-1)}$
 $x = \frac{1}{9}$

(A) evaluate without a calculator: log, 1.7

$$\begin{array}{rcl}
\text{let} & \log_{9} \frac{1}{27} = \times \\
& 9^{\times} = \frac{1}{27} \\
& (3^{2})^{\times} = \frac{1}{3} \\
& 3^{2\chi} = 3^{-3} \\
& 2\chi = -3 \\
& \chi = -3 \\
&$$

- <u>Def</u>: 1 log x means log₁₀ x and is called the <u>common logarithm</u>
 - In x = logex is called the natural logarithm, where ease.718

•

Section 9.3 Logarithmic Functions Page 4

•