Logarithmic Functions

Goals:

1. To evaluate log functions
2. To graph log functions
3. To convert between forms
4. To use in apps

$$
\begin{aligned}
& 2^{3}=8 \\
& 3 \text { is } \frac{\text { exponertht on base } 2+\frac{\text { that produces }}{\text { Clogrithm }} 8}{=\prime}
\end{aligned}
$$

$$
\begin{aligned}
& \text { logarithmic form exponential form }
\end{aligned}
$$

Notes: © $\mathcal{O}(x)=\log _{a} x$ is a function.
(2) $y=\log _{a^{\prime}(x)}$ and $y=a^{x}$ arc inverses.
(ex) convent from exponential to \log form or vice-versa
a) (3):(81)

$$
4=\log _{3}(81)
$$

b) $w^{(b)}=(w)$

$$
v=\log _{e x p}(w)
$$

c) $\quad v^{x+y}=u$

$$
x+y=\log _{v}(u)
$$

d) $v=\log _{8}(w)$

$$
8^{v}=w
$$

e) $\log _{10}(x+b)=c$

$$
10^{c}=x+b
$$

(ex) Graph $y=\log _{2} x$ (inverse of $y=2^{x}$) $2^{y}=x \rightarrow x=2^{(x)}$

Notes on $f(x)=\log _{a} x$

(1) Asymptote: $x=0 \quad$ (y-axis)
(2) Domain: $(0, \infty)$
(3) Range: $(-\infty, \infty)$

Properties of logs and exponents
$a^{\prime}=a$ (1) $\log _{a} a=1$
$a^{0}=1$ (2) $\log _{a}(1)=0$
$a^{x}=a^{x}$ (3) $\quad \log _{a}\left(a^{x}\right)=x$
(4) $a^{(x)}=a \underbrace{\Leftrightarrow \text { iff }}_{\text {equivalent }} x=y, \quad a \neq 0,1, a>0$
(ex) solve
a) $\log _{4} x=3$
b) $\log _{4} 8=2 x+1$
$x=4^{3}$

$$
4^{2 x+1}=8
$$

$x=64$

$$
\begin{aligned}
\left(2^{2}\right)^{2 x+1} & =2^{3} \\
24 & =2^{(3)} \\
4 x+2 & =3 \\
4 x & =1 \\
x & =\frac{1}{4}
\end{aligned}
$$

(ex) evaluate wither a calculator: $\log , \frac{1}{27}$

$$
\text { let } \begin{aligned}
\log _{9} \frac{1}{27} & =x \\
9^{x} & =\frac{1}{27} \\
\left(3^{2}\right)^{x} & =\frac{1}{3^{3}} \\
3^{2 x} & =3^{-3} \\
2 x & =-3 \\
x & =-\frac{3}{2}
\end{aligned}
$$

Def: (1) $\log x$ means $\log _{10} x$ and is called the common logarithm
(2) $\ln x=\log _{e} x$ is called the
natural $\log _{\text {grith }} n$, where es z.718

