Exponential and Logarithmic Equations

Goal: Let's solve these things!

(ex) solve the exponential equation
а) $4 \underset{\downarrow}{3 x^{4}}=(32$
b) $\frac{(2) \cdot 3^{x}}{2}=\frac{8}{2}$

$$
\begin{aligned}
& \left(2^{\frac{1}{2}}\right)^{3 x}=2^{5} \\
& 2^{6 x}=2^{5} \\
& 6 x=5 \\
& x=\frac{5}{6}
\end{aligned}
$$

$$
\log \left(3^{(x}\right)=\log (4)
$$

$$
\begin{array}{r}
\binom{\text { power }}{\text { rule }} \rightarrow \frac{x \cdot \log (3)}{\log 3}=\frac{\log (}{\log } \\
x=\frac{\log 4}{\log 3}
\end{array}
$$

c) $9^{7-3 x}=5$
d) $e^{3 x}=10$

$$
\begin{aligned}
& { }^{\checkmark} \log \left(9^{\bullet \cdots}\right)=\log (5) \\
& \frac{(7-3 x) \log 9}{\log 9}=\frac{\log 5}{\log 9} \\
& \frac{-1-3 x=\frac{\log ^{5}}{\log 9}-7}{-x_{5}(-3) x=-\frac{1}{3} \frac{\log 5}{\log 9}-7\left(\frac{-1}{3}\right)} \\
& x=\frac{-\frac{\log 5}{3 \log 9}+\frac{7}{3}}{\text { exact }^{2.09}} \underset{\text { approximation }}{ }
\end{aligned}
$$

steps
(1) Isolate exponential expression
(2) If possible, write both sides with same base, set exponents equal and solve.
\rightarrow (3) If (2) fails, take" $\log _{10}$ "or "In" of both sides, apply the power rule and solve.
(ex) Solve the logarithmic equation
a)

$$
\begin{gathered}
\log _{3} x=4 \\
x=3^{4} \\
x=81
\end{gathered}
$$

b)

$$
\begin{gathered}
\log _{4}(x-3)=\log _{4}(5) \\
x-3=5 \\
x=8
\end{gathered}
$$

c)

$$
\begin{aligned}
\frac{6 \cdot \log x}{6} & =-\frac{10}{6} \\
\log _{10} x & =-\frac{5}{3} \\
x & =10^{-\frac{5}{3}} \\
x & =\frac{1}{10^{5 / 3}}
\end{aligned}
$$

d) $\log _{(x-9)}^{m} \oplus \log x=1$

$$
\underbrace{\log _{2}(m N)}=\underbrace{\log _{a} m+\log _{a} N}
$$

$$
\begin{aligned}
& \log _{10}[(x-9) x]=1 \\
& (\widetilde{x-9}) x=10^{1} \\
& x^{2}-9 x=10
\end{aligned}
$$

$$
\begin{aligned}
& x^{2}-9 x-10=0 \\
& (x-10)(x+1)=0 \\
& x-10=0 \text { or } x+1=0 \\
& (x=10 \text { or } x>-1 \\
& \text { extraneous }
\end{aligned}
$$

e)

$$
\frac{x+3}{x+2}=\frac{20}{1}
$$

$$
20(x+2)=x+3
$$

$$
20 x+40=x+3
$$

$$
-x \quad-40 \quad-x-40
$$

$$
\frac{19 x}{19}=\frac{-37}{19}
$$

$$
x=\frac{-37}{19}
$$

steps
(1) Get a single log on both sites, set inputs equal and solve.
(2) If (1) fails, get a single \log on one side, switch to exponential, and solve

