Circles and Ellipses
Goals:

1. To find the equation of a circle given its center and radius.
2. To find the center and radius of a circle given its equation.
3. To graph an ellipse.

The Standard Equation of a Circle

(ex) Find the equation of a circle with the given center and radius.
a) $C\left(\begin{array}{c}h \\ 0\end{array}, 0\right), r=1$ (unit circle)

$$
\begin{aligned}
& (x-h)^{2}+(y-k)^{2}=r^{2} \\
& (x-0)^{2}+(y-0)^{2}=1^{2} \\
& x^{2}+y^{2}=1
\end{aligned}
$$

b)

$$
\begin{aligned}
& C(2,-3), r=5 \\
& (x-h)^{2}+(y-k)^{2}=r^{2} \\
& (x-2)^{2}+(y-(-3))^{2}=5^{2} \\
& \left((x-2)^{2}+(y \oplus 3)^{2}=25\right.
\end{aligned}
$$

$$
(x-2)^{2}+(y \oplus 3)^{2}=25
$$

c)

$$
\begin{aligned}
& c(-4), 5) \quad r=2 \sqrt{3} \\
& \begin{aligned}
&(x-h)^{2}+(y-k)^{2}=r^{2} \\
&(x+4)^{2}+(y-5)^{2}=(2 \sqrt{3})^{2} \\
& 11=2^{2}(\sqrt{3})^{2} \\
&=4 \cdot 3 \\
&(x+4)^{2}+(y-5)^{2}=12
\end{aligned}
\end{aligned}
$$

(ex) Find the center and radius and graph the circle with the given equation:

$$
\text { a) }(x+4)^{2}+(y-1-4)^{2}=(9)
$$

$$
\begin{aligned}
& ((x-h))^{2}+(y-k)^{2}= \\
& C(-4,1), r=3
\end{aligned}
$$

b)

$$
\begin{gathered}
x^{2}+(y-3)^{2}=17 \\
(x-h)^{2}+(y-k)^{2}=r^{2}
\end{gathered}
$$

$$
\begin{gathered}
(x-h)^{2}+(y-k)=(r) \\
C(0,3), r=\sqrt{17} \\
r=4.1
\end{gathered}
$$

$$
\begin{aligned}
& G(0,0), r=\text { radius } \\
& \frac{x^{2}}{r^{2}}+\frac{y^{2}}{r^{2}}=\frac{r^{2}}{r^{2}} \\
& \frac{x^{2}}{\sigma^{2}}+\frac{y^{2}}{r^{2}}=1
\end{aligned}
$$

If I replaced r with a bigger number, the graph would be stretched horizontally, creating an oval shape (ellipse)

The Standard Equation of an Ellipse

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \text {, with } C(0,0)
$$

This single equation works as long as we don't insist $a>b$.
(ex) Graph the ellipse
a)
$\frac{x^{2}}{(9)}+\frac{y^{2}}{25}=1$
left/right $\sqrt{9}=3$
up/down $\sqrt{25}=5$

b) $4 x^{2}+9 y^{2}=36$

$$
\left\{\begin{aligned}
& \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \\
& \frac{4 x^{2}}{36}+\frac{9 y^{2}}{36}=\frac{36}{36} \\
& \frac{x^{2}}{9}+\frac{y^{2}}{4}=1 \\
& C(0,0) \\
& \text { left/right } \sqrt{9}=3 \\
& \text { up/down } \sqrt{4}=2
\end{aligned}\right.
$$

c) $6 x^{2}+16 y^{2}=16$

$$
\begin{aligned}
& \frac{6 x^{2}}{16}+\frac{16 y^{2}}{16}=\frac{16}{16} \\
& \frac{6 x^{2}}{16}+y^{2}=1 \\
& \frac{3 x^{2}}{8}+y^{2}=1
\end{aligned}
$$

$$
\begin{aligned}
& \frac{6 x^{2}}{16}+\frac{16 y^{2}}{16}=\frac{16}{16} \\
& \frac{6 x^{2}}{16}+y^{2}=1 \\
& \frac{3 x^{2}}{8}+y^{2}=1 \\
& \frac{x^{2}}{8 / 3}+\frac{r^{2}}{1}=1 \\
& \text { left/ right } \sqrt{8 / 3} \approx 1.6, \text { up/down }=\sqrt{1}=1
\end{aligned}
$$

