Properties of Logarithms
Goals:

1. To apply the product, quotient, and power rules.
2. To apply the Change of Base formula.
3. To graph the natural exponential and natural logarithm functions.

In this section, $M, N, a>0$ and $a \neq 1$.

Product Rule

$$
\log _{a}(m N)=\underbrace{\log _{a} m}_{u}+\underbrace{\log _{a} N}_{v}
$$

Proof: Let $\underbrace{u=\log _{a} m}_{\downarrow \begin{array}{l}\text { convert } \\ \text { to exp. form }\end{array}}$ and $\underbrace{v=\log _{a} N}_{\downarrow}$

$$
a^{u}=M \quad a^{v}=N
$$

Done.
(ex) Express as a sum of logarithms:

$$
\begin{gathered}
\log (5 \cdot 8) \\
\underbrace{\log (5 \cdot 8)}_{1.602}=\underbrace{\log (5)+\log (8)}_{1.602}
\end{gathered}
$$

(ex) Write as a single $\log : \log _{4} u+\log _{4} v$

$$
\begin{aligned}
\log _{a}(m N)= & \underbrace{\log _{a} m+\log _{a} N} \\
\log _{4} u+\log _{4} \frac{\downarrow}{v} & =\log _{4}(u \cdot v) \\
& =\log _{4} u v
\end{aligned}
$$

Quotient Rule

$$
\begin{aligned}
& \left(\log _{a} \frac{M}{N}=\log _{a} M-\log _{a} N\right. \\
& \log _{a} m-\log _{a} N \neq\left(\frac{\log _{a} m}{\log _{a} N}\right.
\end{aligned}
$$

(ex) Write as a single logarithm:

$$
\begin{gathered}
\log _{b}\left(22-\log _{b}(3)\right. \\
\log _{a} \frac{M}{N}=\log a n-\log _{a} N \\
\log _{b} 23-\log _{b} 3=\log _{b}\left(\frac{22}{3}\right)
\end{gathered}
$$

Power Rule

$$
\log _{b}\left(m^{c}\right)=c \log _{b} m
$$

(ex)

$$
\begin{aligned}
& \log _{b} m^{2}=\left(2 \log _{b} m\right. \\
& \log _{b}(m \cdot m)=1 \log _{b} m+1 \log _{b} m
\end{aligned}
$$

(ex) Write as a product: $\log _{b} x^{10}$

$$
=10 \log _{b} x
$$

(ex) Write as a single logarithm:

$$
\begin{aligned}
& 20 \log _{a} x \\
& =\log _{a} x^{20}
\end{aligned}
$$

Base Conversion

$$
\log _{b} m=\frac{\log _{a} m}{\log _{a} b}
$$

(ex)

$$
\begin{aligned}
\text { Estimate } & \left.\begin{array}{rl}
\overbrace{3} 5 \\
& =\left[\begin{array}{l}
\frac{\log (5)}{\log _{3}} \approx 1.465 \\
\\
=\left[\frac{\log (3)}{\ln (5)}\right. \\
\ln (3)
\end{array} 1.465\right.
\end{array}\right) .
\end{aligned}
$$

Definitions
\rightarrow (1) $\log x=\log _{10} x \quad$ (Common Logarithm)
\rightarrow (2) $\ln x=\log _{e} x \quad$ (Natural Logarithm)
Where $e \approx 2.718$
(ex) Graph $y=e^{(x)} \quad$ (Natural Exponential)

x	$y=e^{x}$
-1	≈ 0.4
0	1
$1=2.7$	
2	$=7.4$

$y=\ln x=\log _{e} x \quad$ Natural Exponential Function
(ex) Graph $\frac{y}{2}=\frac{2 \cdot \ln x}{2}$

$$
\begin{gathered}
\frac{y}{2}=\ln x \\
\left(\frac{y}{2}=\log _{e} x\right. \\
e^{\frac{y}{2}}=x \\
e^{-\frac{1}{2}}=x
\end{gathered}
$$

5/9/2016 1:43 PM - Screen Clipping

